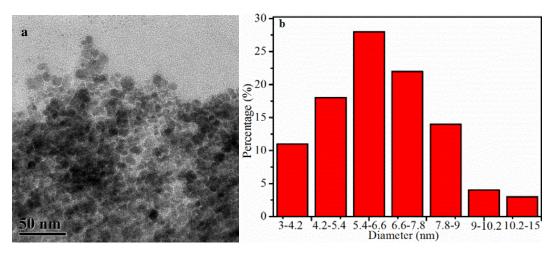
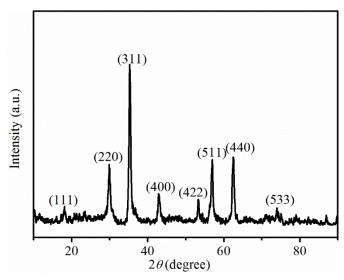
Supplementary Information

Microbial synthesis of Pd/Fe₃O₄, Au/Fe₃O₄ and PdAu/Fe₃O₄ nanocomposites for catalytic reduction of nitroaromatic compounds

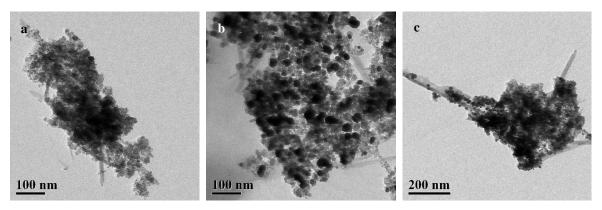
Ya Tuo¹, Guangfei Liu^{1, *}, Bin Dong¹, Jiti Zhou¹, Aijie Wang^{2, *}, Jing Wang¹, Ruofei Jin¹, Hong Lv¹, Zeou Dou¹, Wenyu Huang¹


¹ Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China

² State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China


*corresponding authors:

Guangfei Liu, guangfeiliu@dlut.edu.cn


Aijie Wang, waj0578@hit.edu.cn

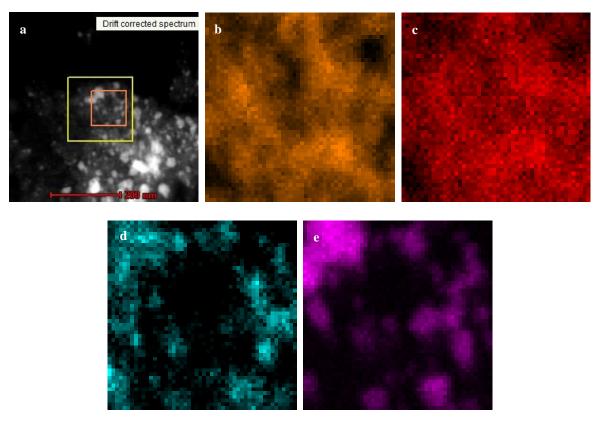

Fig. S1 Morphology and size distribution of biogenic Fe₃O₄ nanoparticles. (a) TEM image and (b) size distribution. Test of normality of nanoparticles size was determined by the Kolmogorov-Smirnov test.

Fig. S2 XRD analysis of biogenic Fe₃O₄ nanoparticles. The Fe₃O₄ nanoparticles were collected by external magnet, washed three times with the degassed Milli-Q water and then dried under vacuum at 60 $\,^{\circ}$ C for XRD analysis.

Fig. S3 TEM images of different nanocomposites after 48 h incubation of biogenic Fe_3O_4 with noble metal precursor salt solutions. (a) Pd/Fe_3O_4 , (b) Au/Fe_3O_4 and (c) $PdAu/Fe_3O_4$

 $\textbf{Fig. S4} \ EDX \ mapping \ analysis \ of \ PdAu/Fe_3O_4. \ (a) \ Dark-field \ TEM \ image, \ (b) \ Fe, \ (c) \ O, \ (d) \ Pd \ and \ (e) \ Au.$

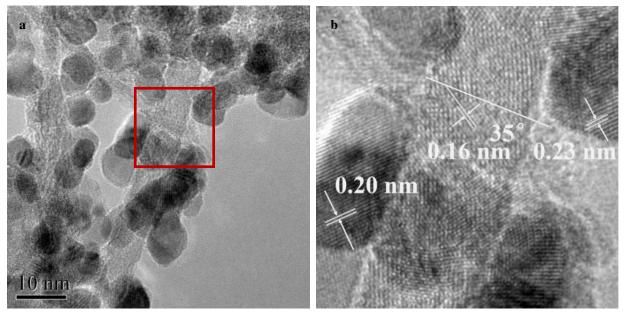
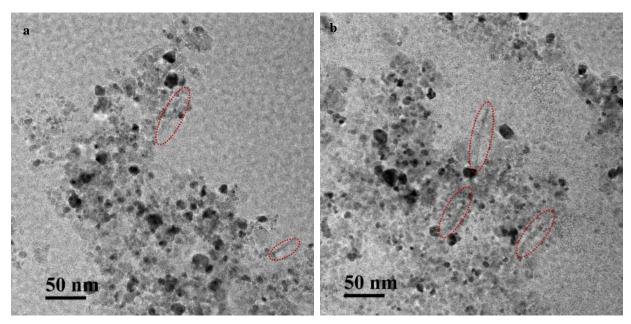
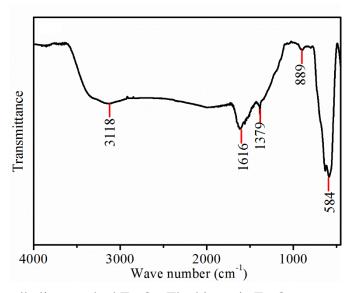
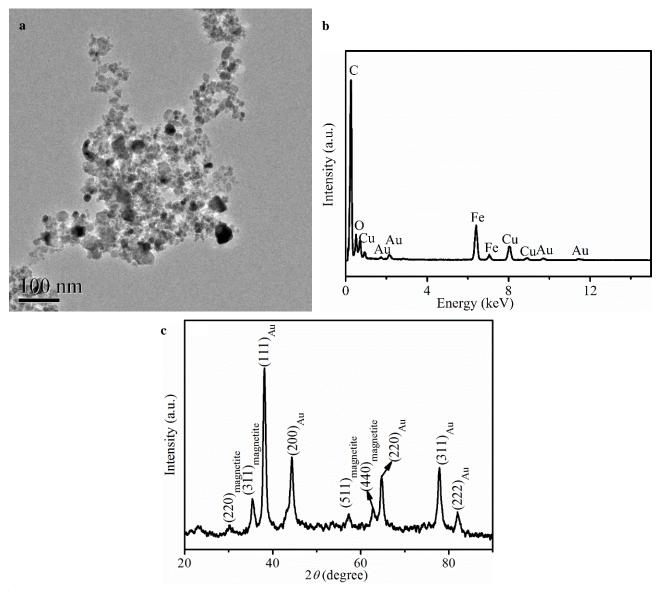
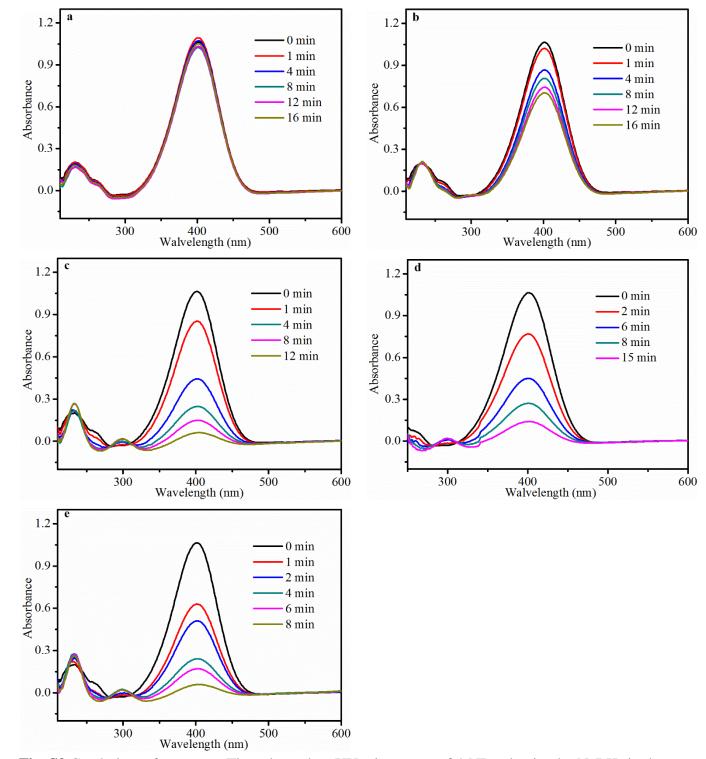
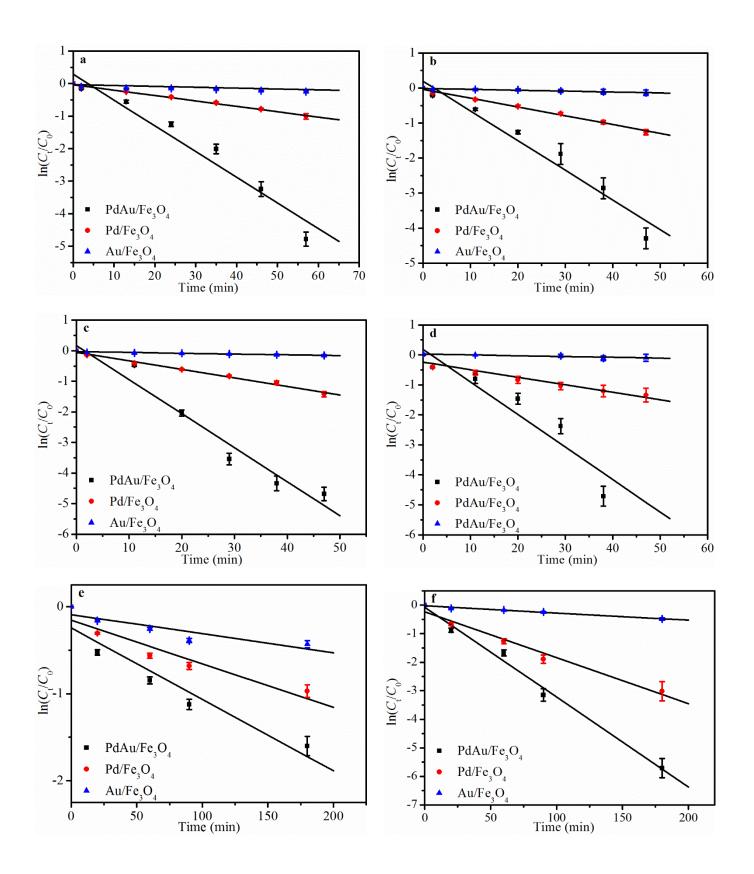


Fig. S5 Characterization of PdAu/Fe₃O₄. (a) HRTEM image and (b) the related magnification section.


Fig. S6 Time-course TEM images of PdAu/Fe $_3$ O $_4$. (a) 10 h and (b) 24 h.


Fig. S7 FTIR analysis of the alkaline-washed Fe_3O_4 . The biogenic Fe_3O_4 nanoparticles were treated with NaOH to remove the absorbed organic substances, and then washed for several times until the pH of the supernatant reached neutral.

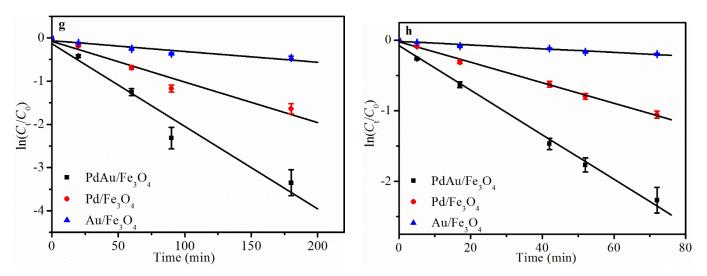


Fig. S8 Characterization of the nanomaterials synthesized on alkaline-washed Fe_3O_4 after mixing with Pd and Au precursor salt solutions. (a) TEM image, (b) EDX and (c) XRD pattern.

Fig. S9 Catalytic performances. Time-dependent UV-vis spectra of 4-NP reduction by NaBH₄ in the presence of (a) no catalyst, (b) Au/Fe₃O₄, (c) Pd/Fe₃O₄, (d) Pd/Fe₃O₄+Au/Fe₃O₄ and (e) PdAu/Fe₃O₄.

Fig. S10 Kinetics analyses. Plots of $\ln(C_t/C_0)$ versus time for the reduction of (a) nitrobenzene, (b) 4-nitrotoluene, (c) 3-nitrotolune, (d) 2-nitrotolune, (e) 4-nitrophenol, (f) 3-nitrophenol, (g) 2-nitrophenol and (h) 4-nitrochlorobenzene. Error bars represent standard deviation (n=3). Significant differences based on the one-way ANOVA (p<0.05).

Table S1 Apparent kinetic constant (k_{app}) values of PdAu/Fe₃O₄ in recycling runs of 4-NP reduction. The k_{app} values represent the mean \pm deviation (n=3). Significant differences based on the one-way ANOVA (p<0.05)

Recycling	1	2	3	4	5	6	7	8
run	_	_		·	-	·	·	Ţ.
kapp (min ⁻¹)	$0.3282 \pm$	$0.2852 \pm$	0.2418 ±	0.2323 ±	0.2292 ±	0.2239 ±	0.1976 ±	0.1937 ±
	0.0229	0.0151	0.0186	0.0053	0.0038	0.0089	0.0076	0.0111

Table S2 Comparison of reductive conversion efficiency of different nitroaromatics when using Pd/Fe₃O₄, Au/Fe₃O₄ and PdAu/Fe₃O₄ as catalysts [%conversion attained during reaction time (min)]. Conversions represent the mean \pm deviation (n=3). Significant differences based on the one-way ANOVA (p<0.05)

		m (n-3). Bigi	Pd/Fe ₃ O ₄		Au/Fe ₃ O ₄		PdAu/Fe ₃ O ₄	
Entry St	Starting nitroaromatics	Product	conversio		T C: (:)	conversion	Time	conversion
			Time (min)	(min) % Time (min)	Time (min)	%	(min)	%
1	NO ₂	NH ₂	57	63.6 ±2.9	57	22.1 ±2.6	57	99.2 ±0.6
2	NO ₂	NH ₂	47	71.7 ±2.3	47	12.6 ±1.9	47	98.6 ±0.5
3	NO ₂ CH ₃	NH ₂ CH ₃	47	73.9 ±2.9	47	12.4 ±2.2	47	100 ±0.1
4	NO ₂	NH ₂	47	75.8 ±2.3	47	14.1 ±2.5	47	99.1 ±0.2
5	NO ₂	NH ₂	180	62.1 ±2.5	180	35.0 ±2.5	180	79.9 ±2.3
6	NO ₂	NH ₂	180	95.1 ±1.5	180	38.2 ±2.3	180	99.7 ±1.1
7	NO ₂ OH	NH ₂	180	80.6 ±2.3	180	37.2 ±2.6	180	96.5 ±1.1
8	NO ₂	NH ₂	72	65.2 ±1.7	72	18.1 ±1.1	72	89.6 ±1.8

Table S3 The k_{app} values of reducing different nitroaromatics in the presence of Pd/Fe₃O₄, Au/Fe₃O₄ and PdAu/Fe₃O₄. The k_{app} values represent the mean \pm deviation (n=3). Significant differences based on the one-way ANOVA (p<0.05)

Substrate	$k_{app}~({ m min^{-1}})$					
Substrate	PdAu/Fe ₃ O ₄	Pd/Fe ₃ O ₄	Au/Fe ₃ O ₄			
nitrobenzene	$0.0790\ \pm0.0078$	0.0166 ± 0.0007	0.0034 ± 0.0007			
4-nitrotoluene	$0.0848\ \pm0.0076$	0.0251 ± 0.0010	$0.0025\ \pm0.0002$			
3-nitrotoluene	0.1113 ± 0.0093	0.0279 ± 0.0012	0.0026 ± 0.0004			
2-nitrotoluene	0.1086 ± 0.0178	0.0254 ± 0.0032	0.0030 ± 0.0005			
4-nitrophenol	$0.0082\ \pm0.0014$	0.0050 ± 0.0009	$0.0022\ \pm0.0006$			
3-nitrophenol	0.0315 ± 0.0017	0.0162 ± 0.0015	0.0025 ± 0.0002			
2-nitrophenol	0.0191 ± 0.0022	0.0094 ± 0.0013	0.0025 ± 0.0004			
4-nitrochlorobenzene	0.0315 ± 0.0011	0.0145 ± 0.0004	0.0026 ± 0.0002			